Corrigé par

par Mohamed TARQI

Partie I

(a) Soient f et g deux éléments de $\mathbf{C}^{\infty}(\mathbf{D})$ et $(x,y) \in \mathbf{D}$, on a :

$$\begin{split} \mathbf{T}(fg)(x,y) &= x \frac{\partial (fg)}{\partial x}(x,y) + y \frac{\partial (fg)}{\partial y}(x,y) \\ &= x \left(\frac{\partial f}{\partial x}(x,y)g(x,y) + f(x,y) \frac{\partial g}{\partial x}(x,y) \right) + y \left(\frac{\partial f}{\partial y}(x,y)g(x,y) + f(x,y) \frac{\partial g}{\partial y}(x,y) \right) \\ &= \left(x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) \right) g(x,y) + \left(x \frac{\partial g}{\partial x}(x,y) + y \frac{\partial g}{\partial y}(x,y) \right) f(x,y). \end{split}$$

Ainsi $\mathbf{T}(fg)=g\mathbf{T}(f)+f\mathbf{T}(g).$ (b) Soit f un élément de $\mathbf{C}^\infty(\mathbf{D})$ et $(x,y)\in\mathbf{D}.$ On a :

$$\frac{\partial f}{\partial x}(x,y) = \frac{\partial \widetilde{f}}{\partial r}(r,t)\frac{\partial r}{\partial x}(x,y) + \frac{\partial \widetilde{f}}{\partial t}(r,t)\frac{\partial t}{\partial x}(x,y)$$
$$= \frac{x}{\sqrt{x^2 + y^2}}\frac{\partial \widetilde{f}}{\partial r}(r,t) - \frac{y}{x^2}\frac{\partial \widetilde{f}}{\partial t}(r,t).$$

De même, on obtient :

$$\frac{\partial f}{\partial y}(x,y) = \frac{\partial \widetilde{f}}{\partial t}(r,t)\frac{\partial r}{\partial y}(x,y) + \frac{\partial \widetilde{f}}{\partial t}(r,t)\frac{\partial t}{\partial y}(x,y)$$
$$= \frac{y}{\sqrt{x^2 + y^2}}\frac{\partial \widetilde{f}}{\partial r}(r,t) + \frac{1}{x}\frac{\partial \widetilde{f}}{\partial t}(r,t).$$

D'où:

$$\mathbf{T}(f)(x,y) = \frac{x^2}{\sqrt{x^2 + y^2}} \frac{\partial \widetilde{f}}{\partial r}(r,t) - \frac{y}{x} \frac{\partial \widetilde{f}}{\partial t}(r,t) + \frac{y^2}{\sqrt{x^2 + y^2}} \frac{\partial \widetilde{f}}{\partial r}(r,t) + \frac{y}{x} \frac{\partial \widetilde{f}}{\partial t}(r,t)$$

$$= r \frac{\partial \widetilde{f}}{\partial r}(r,t).$$

(c) Si F est différentiable en un point a, on note $\mathbf{J}_f(a)$ la matrice jacobienne de F en a. On sait que pour $(x,y\in\mathbf{D},a)$ on a:

$$\mathbf{J}_{\varphi \circ f}(x,y) = \mathbf{J}_{\varphi}(f(x,y)) \times \mathbf{J}_{f}(x,y)
= \varphi'(f(x,y)) \left(\frac{\partial f}{\partial x}(x,y) \quad \frac{\partial f}{\partial y}(x,y) \right)
= \left(\varphi'(f(x,y)) \frac{\partial f}{\partial x}(x,y) \quad \varphi'(f(x,y)) \frac{\partial f}{\partial y}(x,y) \right).$$

D'où:

$$\mathbf{T}(\varphi \circ f)(x,y) = x \frac{\partial(\varphi \circ f)}{\partial x}(x,y) + y \frac{\partial(\varphi \circ f)}{\partial y}(x,y)$$
$$= x\varphi'(f(x,y)\frac{\partial f}{\partial x}(x,y) + y\varphi'(f(x,y)\frac{\partial f}{\partial y}(x,y))$$
$$= \varphi'(f(x,y))\mathbf{T}f(x,y)$$

Ainsi, $\mathbf{T}(\varphi \circ f) = (\varphi' \circ f) \mathbf{T} f$.

- **2.** Étude de N_0 .
 - (a) Pour tout $(x, y) \in \mathbf{D}$, on a :

$$\mathbf{T}t(x,y) = x\frac{\partial t}{\partial x}(x,y) + y\frac{\partial t}{\partial y}(x,y) = x\left(\frac{-y}{x^2}\right) + y\left(\frac{1}{x}\right) = 0.$$

D'où $\mathbf{T}t=0.$ (b) Soit $\varphi\in\mathbf{C}^{\infty}(\mathbb{R}_{+}^{*}),$ on a :

$$\mathbf{T}(\varphi \circ t) = (\varphi' \circ t)\mathbf{T}t = 0.$$

D'où $\mathbf{T}(\varphi \circ t) = 0$.

- (c) Soit $f \in \mathbf{N}_0$, alors $\mathbf{T}f(x,y) = 0$ pour tout $(x,y) \in \mathbf{D}$. Mais $\mathbf{T}f(x,y) = r\frac{\partial \widetilde{f}}{\partial r}(r,t) = 0$, donc $\widetilde{f} = \varphi(t)$ où φ est une fonction de classe \mathbf{C}^1 sur $]0, +\infty[$ d'une seule variable. Ainsi $f(x,y) = \widetilde{f}(r,t) = \varphi\left(\frac{y}{x}\right)$, donc la solution générale de $\mathbf{T}f = 0$ est de la forme $(x,y) \mapsto \varphi\left(\frac{y}{x}\right)$ où φ est de classe \mathbf{C}^∞ sur $]0, +\infty[$.
- 3. Étude de N_1 .
 - (a) Pour tout $(x, y) \in \mathbf{D}$, on a :

$$\mathbf{T}r(x,y) = x\frac{\partial r}{\partial x}(x,y) + y\frac{\partial r}{\partial y}(x,y) = x\left(\frac{-x}{\sqrt{x^2 + y^2}}\right) + y\left(\frac{-x}{\sqrt{x^2 + y^2}}\right) = r(x,y).$$

D'où ${\bf T}r=r.$ (b) Soit $\varphi\in {\bf C}^\infty(\mathbb{R}_+^*),$ on a :

$$\mathbf{T}(\varphi \circ r) = (\varphi' \circ r) \mathbf{T}r = (\varphi' \circ r) r.$$

En particulier si $\varphi(u)=u^k$ où $k\in\mathbb{Z}$, on obtient :

$$\mathbf{T}(r^k) = (\varphi' \circ r) \, r = kr^{k-1}r = kr^k.$$

(c) Soit $f \in \mathbf{C}^{\infty}(\mathbb{R})$ tel que $r^{-1}f \in \mathbf{N}_0$, donc il existe φ de classes \mathbf{C}^{∞} sur $]0, +\infty[$ tel que $r^{-1}f(x,y) = \varphi\left(\frac{y}{x}\right)$ pour tout $(x,y) \in \mathbf{D}$, donc $f(x,y) = r(x,y)\varphi\left(\frac{y}{x}\right) = r(x,y)\varphi \circ t(x,y)$. Ainsi, $f = r\left(\varphi \circ t\right)$. Inversement, si f est la forme précédente, on a :

$$\mathbf{T}\left[r\left(\varphi\circ t\right)\right]=r\mathbf{T}(\varphi\circ t)+\left(\varphi\circ t\right)\mathbf{T}r=\left(\varphi\circ t\right)\mathbf{T}r=r\left(\varphi\circ t\right).$$

Donc $r\left(\varphi\circ t\right)\in\mathbf{N}_{1}$. D'où l'équivalence :

$$f \in \mathbf{N}_1 \Longleftrightarrow r^{-1} f \in \mathbf{N}_0.$$

En conséquence les fonctions de \mathbf{N}_1 sont de la forme $(x,y)\mapsto r(x,y)\varphi\left(\frac{y}{x}\right)$ où φ est une fonction de classe \mathbf{C}^{∞} sur $]0,+\infty[$ d'une seule variable.

- **4.** Étude de N_{α} .
 - (a) Soit $k \in \mathbb{Z}$ et $f \in \mathbf{C}^{\infty}(\mathbb{R})$ telle que $r^{-k}f \in \mathbf{N}_0$, donc il existe une fonction φ de classe \mathbf{C}^{∞} sur $]0, +\infty[$ tel que $r^{-k}f(x,y) = \varphi\left(\frac{y}{x}\right)$, donc $f(x,y) = r^k(x,y)\varphi\left(\frac{y}{x}\right) = r(x,y)^k\varphi \circ t(x,y)$ ou encore $f = r^k \ (\varphi \circ t)$. Inversement, si f est la forme précédente, on a :

$$\mathbf{T}\left[r^{k}\left(\varphi\circ t\right)\right]=r^{k}\mathbf{T}(\varphi\circ t)+\left(\varphi\circ t\right)\mathbf{T}r^{k}=\left(\varphi\circ t\right)\mathbf{T}r^{k}=kr^{k}\left(\varphi\circ t\right).$$

Donc $r^k\left(\varphi\circ t\right)\in\mathbf{N}_k$. D'où l'équivalence :

$$f \in \mathbf{N}_k \Longleftrightarrow r^{-k} f \in \mathbf{N}_0.$$

En conséquence les fonctions de \mathbf{N}_k sont de la forme $(x,y)\mapsto r^k(x,y)\varphi\left(\frac{y}{x}\right)$ où φ est une fonction de classe \mathbf{C}^∞ sur $]0,+\infty[$ d'une seule variable.

(b) Soit α un nombre complexe, pour tout $(x, y) \in \mathbf{D}$, on a :

$$\mathbf{T}(r^{\alpha})(x,y) = x \frac{\partial (e^{\alpha \ln r})}{\partial x}(x,y) + y \frac{\partial (e^{\alpha \ln r})}{\partial y}(x,y)$$
$$= \alpha x \frac{\partial \ln r}{\partial x}(x,y)e^{\alpha \ln r}(x,y) + \alpha y \frac{\partial r}{\partial y}(x,y)e^{\alpha \ln r}$$
$$= \alpha r^{\alpha}(x,y)$$

D'où $\mathbf{T}(r^{\alpha}) = \alpha r^{\alpha}$.

Comme précédemment les éléments de \mathbf{N}_{α} sont de la forme $(x,y) \mapsto r^{\alpha}(x,y) \varphi\left(\frac{y}{x}\right)$ où φ est une fonction de classe \mathbf{C}^{∞} sur $]0,+\infty[$ d'une seule variable..

Partie II

Dans cette partie, on suppose donnés deux nombres complexes α et β , une fonction g non nulle élément de \mathbf{N}_{β} et une fonction φ_0 élément de $\mathbf{C}^{\infty}(\mathbb{R}_+^*)$. On se propose de résoudre l'équation d'inconnue f, élément de $\mathbf{C}^{\infty}(\mathbf{D})$:

$$\mathbf{T}f - \alpha f = g\varphi_0(r).$$

1. On suppose d'abord $\varphi_0 = 1$, l'équation devenant alors :

(1)
$$\mathbf{T}f - \alpha f = g.$$

- (a) Soit $\lambda \in \mathbb{C}$ et $f = \lambda g$, on a $g = \mathbf{T} f \alpha f = \lambda (\mathbf{T} g \alpha g) = \lambda (\beta \alpha) g$, et comme g est non nulle et $\alpha \neq \beta$, alors $\lambda = \frac{1}{\beta \alpha}$. Ainsi la fonction $f_0 = \frac{1}{\beta \alpha} g$ est une solution particulière de (1). f solution de (1) si, et seulement si, $f f_0 \in \mathbf{N}_{\alpha}$. Donc les solutions de (1) sont de la forme $(x, y) \mapsto \frac{1}{\beta \alpha} g(x, y) + r^{\alpha}(x, y) \varphi\left(\frac{y}{x}\right)$ où φ est de classe \mathbf{C}^{∞} sur $]0, +\infty[$.
- (b) Soit φ est une fonction de $\mathbf{C}^{\infty}(\mathbb{R}_{+}^{*})$ et $f=\varphi(r)g$, on a :

$$\mathbf{T}f - \alpha f = g\mathbf{T}\varphi(r) + \varphi(r)\mathbf{T}g - \alpha\varphi(r)g$$
$$= g\varphi'(r)\mathbf{T}r + \alpha\varphi(r)g - \alpha\varphi(r)g$$
$$= r\varphi'(r)g.$$

Donc f est solution de (1) si, et seulement si, $r\varphi'(r)=1$ ou encore $\varphi'(r)=\frac{1}{r}$. Donc il suffit de prendre par exemple $\varphi(r)=\ln r$.

Donc la solution générale de (1) est de la forme $f = g \ln r + r^{\alpha} \varphi \circ t$ où φ est de classe \mathbb{C}^{∞} sur $]0, +\infty[$.

- 2. On pose $g_1(x,y) = \frac{x^2 + y^2 xy}{x^2 + y^5 + xy}$, on vérifie facilement que $\mathbf{T}g_1 = 0$, donc $g \in \mathbf{N}_0$. Donc d'après l'étude précédente la solution générale de $x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) f(x,y) = \frac{x^2 + y^2 xy}{x^2 + y^5 + xy}$, qui s'écrit $\mathbf{T}f f = g_1$, est de la forme $f = -g_1 + r(\varphi \circ t)$ où φ est de classe \mathbf{C}^{∞} sur $]0, +\infty[$ (ici $\alpha = 1$ et $\beta = 0$).
 - forme $f = -g_1 + r(\varphi \circ t)$ où φ est de classe \mathbf{C}^{∞} sur $]0, +\infty[$ (ici $\alpha = 1$ et $\beta = 0$). • On pose $g_2(x,y) = \frac{x^2 + y^2 - xy}{x^2 + y^5 + xy}$, on vérifie aussi que $\mathbf{T}g_2 - 2g_2 = 0$, donc $g \in \mathbf{N}_2$. Donc d'après l'étude précédente la solution générale de $x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) - 2f(x,y) = \frac{(x^2 + y^2)(x - y)}{x + y}$, qui s'écrit $\mathbf{T}f - 2f = g_2$, est de la forme $f = g_2 \ln r + r^2(\varphi \circ t)$ où φ est de classe \mathbf{C}^{∞} sur $]0, +\infty[$ (ici $\alpha = \beta = 2$).
- 3. Soit g est un élément de N_{β} .
 - (a) Cherchons une condition sur φ pour que $\varphi(r)g$ soit une solution de (2). On a :

$$\mathbf{T}(\varphi(r)g) - \alpha \varphi(r)g = \varphi(r)\mathbf{T}g + g\mathbf{T}_{\varphi(r)} - \alpha \varphi(r)g$$

$$= \beta \varphi(r)g + g\varphi'(r)r - \alpha \varphi(r)g$$

$$= (\beta - \alpha)\varphi(r)g + r\varphi'(r)g$$

$$= [(\beta - \alpha)\varphi(r) + r\varphi'(r)]g$$

Donc φ solution de l'équation différentielle $xy'+(\beta-\alpha)y=\varphi_0$. La méthode de la variation de la constante montre que $\varphi(r)=r^{\alpha-\beta}\int r^{\beta-\alpha-1}\varphi_0(r)\mathrm{d}r$.

Soit f_0 une solution particulière de (2), donc f solution de (2) si, et seulement si, $f-f_0$ solution de $\mathbf{T}f-\alpha f=0$, c'est-à-dire $f-f_0\in \mathbf{N}_\alpha$, donc f est de la forme $f_0+r^\alpha\ (\varphi\circ t)$ où φ est de classe \mathbf{C}^∞ sur $]0,+\infty[$.

(b) Ici $\varphi(r) = \int \frac{\ln r}{r} dr = \frac{(\ln r)^2}{2} + \lambda$ ou λ est une constante arbitraire. Donc les solutions de l'équation $\mathbf{T}f - \alpha f = g \ln r$ sont de la forme $\frac{(\ln r)^2}{2}g + r^{\alpha} (\varphi \circ t)$.

Partie III

- 1. $\mathbf{T}^2 f = 0 \Leftrightarrow \mathbf{T} f \in N_0$, donc il existe une fonction φ_1 de classe \mathbf{C}^{∞} sur $]0, +\infty[$ tel que $\mathbf{T} f = \varphi_1 \circ t$. Comme $\mathbf{T}(\varphi_1 \circ t) = 0$, alors d'après la question II 1.b), l'équation $\mathbf{T} f = \varphi_1 \circ t$ admet une solution particulière de la forme $(\varphi_1 \circ t) \ln r$ (ici $\alpha = \beta = 0$), donc la solution générale de $\mathbf{T}^2 f = 0$ s'écrit sous la forme $f = (\varphi_1 \circ t) \ln r + \varphi_2 \circ t$ où φ_2 est de classe \mathbf{C}^{∞} sur $]0, +\infty[$.
- 2. Cherchons d'abord un solution particulière f_0 de $\mathbf{T}^2 f = g$. Donc $\mathbf{T} f_0$ est solution particulière de $\mathbf{T} h = g$, on peut prendre $\mathbf{T} f_0$ sous la forme $\mathbf{T} f_0 = g \ln r$ ($\alpha = \beta = 0$). Donc on peut prendre f_0 est de la forme $\frac{1}{2} (\ln r)^2 g$. Ainsi $\mathbf{T}^2 f = g \Leftrightarrow \mathbf{T}^2 (f f_0) = 0$, donc d'après la première question de cette partie $f f_0 = \ln r (\varphi_1 \circ t) + \varphi_2 \circ t$. D'où la solution générale de $\mathbf{T}^2 f = g$:

$$f = \frac{1}{2} (\ln r)^2 g + \ln r (\varphi_1 \circ t) + \varphi_2 \circ t.$$

3. $\mathbf{T}^3 f = 0 \Leftrightarrow \mathbf{T} u = 0$ où $u = \mathbf{T}^2 f$ et $\mathbf{T} u = 0$, donc $u = \varphi_1 \circ t$ et $f = \frac{1}{2} (\ln r)^2 (\varphi_1 \circ t) + \ln r (\varphi_2 \circ t) + \varphi_3 \circ t$ où $\varphi_1, \varphi_2, \varphi_3$ sont de classe \mathbf{C}^{∞} sur $]0, +\infty[$.

Supposons que la solution générale de $\mathbf{T}^n f = (n \in \mathbb{N}^*)$ est de la forme $f_n = \sum_{k=0}^{n-1} \frac{1}{k!} (\ln r)^k (\varphi_k \circ t)$ où $\varphi_0, \varphi_1, ..., \varphi_{n-1}$ sont de classe \mathbf{C}^{∞} sur $]0, +\infty[$. On a

$$\mathbf{T}f_n = \sum_{k=0}^{n-1} \frac{1}{k!} \mathbf{T} \left[(\ln r)^k \left(\varphi_k \circ t \right) \right] = \sum_{k=0}^{n-1} \frac{1}{k!} \mathbf{T} \left[(\ln r)^k \right] \left(\varphi_k \circ t \right) + \sum_{k=0}^{n-1} (\ln r)^k \mathbf{T} (\varphi_k \circ t).$$

Or

$$\mathbf{T}(\ln r)^{k} = \ln r \mathbf{T}(\ln r)^{k-1} + (\ln r)^{k-1} \mathbf{T}(\ln r)
= (\ln r)^{2} \mathbf{T}(\ln r)^{k-2} + \ln r \times \ln r^{k-2} \mathbf{T}(\ln r) + (\ln r)^{k-1}
= (\ln r)^{2} \mathbf{T}(\ln r)^{k-2} + 2(\ln r)^{k-2}$$

On conclut par récurrence que $\mathbf{T}(\ln r)^k = k (\ln r)^{k-1}$, d'où $\mathbf{T} f_n = f_{n-1}$ puis par récurrence $\mathbf{T}^{n-1} f_n = \varphi_0 \circ t$ et donc $\mathbf{T}^n f_n = 0$. D'où :

 $\mathbf{T}^n f = 0 \Leftrightarrow \text{il existe des fonctions } \varphi_0, \varphi_1, ..., \varphi_{n-1} \text{ de classe } \mathbf{C}^1 \text{ sur } \mathbf{D} \text{ telles que } f = \sum_{k=0}^{n-1} \frac{1}{k!} \left(\ln r \right)^k \left(\varphi_k \circ t \right).$

Partie IV

 $\textbf{1.} \quad \text{Si } (\mathbf{T} - \alpha \mathbf{I}) \circ (\mathbf{T} - \beta \mathbf{I}) f = 0 \text{ alors } \mathbf{T} f - \beta f \in \mathbf{N}_{\alpha}, \\ \text{donc } \mathbf{T} f - \beta f = r^{\alpha} \varphi \circ t. \\ \text{Comme } \mathbf{T} (r^{\alpha} \varphi \circ t) = r^{\alpha} \mathbf{T} (\varphi \circ t) + \mathbf{T} (r^{\alpha}) \varphi \circ t = \alpha r^{\alpha} \varphi \circ t, \\ \text{donc } r^{\alpha} \varphi \circ t, \\ \text{donc } r^{\alpha} \varphi \circ t \in \mathbf{N}_{\alpha}. \\ \text{D'où :}$

$$f = \begin{cases} \ln r \times r^{\alpha} \varphi \circ t + r^{\alpha} \varphi \circ t & \text{si } \alpha = \beta \\ \frac{1}{\beta - \alpha} r^{\alpha} \varphi \circ t + r^{\beta} \varphi \circ t & \text{si } \alpha \neq \beta \end{cases}$$

2. f solution de $(\mathbf{T} - \alpha \mathbf{I}) \circ (\mathbf{T} - \beta \mathbf{I}) f = g$ si, et seulement si, $h = (\mathbf{T} - \alpha \mathbf{I}) f$ solution de $(\mathbf{T} - \alpha \mathbf{I}) h = g$. D'où :

$$h = \begin{cases} \frac{1}{\gamma - \alpha} g + r^{\alpha} \varphi \circ t & \text{si } \alpha \neq \gamma \\ g \ln r + r^{\beta} \varphi \circ t & \text{si } \alpha = \gamma \end{cases}$$

3. L'équation d'inconnue $f \in \mathbf{C}^{\infty}(\mathbf{D})$:

$$\forall (x,y) \in \mathbf{D}, \ x^2 \frac{\partial^2 f}{\partial x^2}(x,y) + y^2 \frac{\partial^2 f}{\partial y^2}(x,y) + 2xy \frac{\partial^2 f}{\partial x \partial y}(x,y) = kf(x,y)$$

est équivalente à $\mathbf{T}^2 f - \mathbf{T} f - k f = 0$. Cette dernière équation s'écrit $(\mathbf{T} - \alpha \mathbf{I}) \circ (\mathbf{T} - \beta \mathbf{I}) = 0$ où $\alpha = \frac{1 + \sqrt{1 + 4k}}{2}$ et $\beta = \frac{1 - \sqrt{1 + 4k}}{2}$. Donc d'après la question 1. de cette partie,

$$f = \left\{ \begin{array}{ll} \ln r \times r^{\alpha} \varphi \circ t + r^{\alpha} \varphi \circ t & \text{si } k = \frac{-1}{4}, \\ \frac{1}{\beta - \alpha} r^{\alpha} \varphi \circ t + r^{\beta} \varphi \circ t & \text{si } k \neq \frac{-1}{4}. \end{array} \right.$$